If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+24x+1=0
a = 5; b = 24; c = +1;
Δ = b2-4ac
Δ = 242-4·5·1
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{139}}{2*5}=\frac{-24-2\sqrt{139}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{139}}{2*5}=\frac{-24+2\sqrt{139}}{10} $
| 5x-2+3x+22=180 | | (4x+4)/6=(2x-8)/2 | | 2x^2=3x-35 | | 5x-100=-35 | | 2t–9=–4t+3 | | k+25/9=4 | | 85=5b+25 | | x+3/x+4-x-5/x=0 | | -24/3+(-5)-(-4)=x | | -16/12x+27/5x=-6 | | -y2=9 | | n-2×180=108 | | 14v=938 | | 5g=245 | | 18m=558 | | 5y=815 | | 5d=635 | | 29s=406 | | 29s=405 | | 31u=930 | | 7m-11=17 | | 26-1/2x=2x+6 | | 4(8c=4) | | 58=-8/2x+2 | | 10(2x-30)+20=0 | | 9x+8+3x=12 | | 16t-5t^2=0 | | 5x-3=7x+8. | | 6(x-7)+6=0 | | Y=1.03x+4.28 | | 6^23=m/8 | | 2(1/4)^4x=128 |